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Abstract. In this survey I address geometric questions related to the usual p-Laplacian−∆pu =
div

(
|∇u|p−2∇u

)
as well as its normalized version −∆N

p u = 1
p
|∇u|2−p∆pu and their parabolic

counterparts. Special attention is given to limiting cases p → ∞ and p → 1, to eigenvalue
problems and to Neumann boundary conditions.
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